Sensors and Switches

C-Modules - Switching \& Namur (Axiom)

C-Modules

Used in the Axiom platform, the C-Module (Continuous sensing) integrates a magnetic resistive sensor system to monitor exact valve position throughout the rotational range. Push button or remote Open and Closed position setting along with microprocessor based operation make this state of the art system convenient, reliable, and smart.

Namur Sensors (44)

Configuration	(2) Namur Outputs
Output	(1) or (2) Solenoid Power Input(s)
Conforms to DIN 19234	
Current Ratings	Target On I $\leq 1.0 \mathrm{~mA}$
	Target Off I $\geq 2.1 \mathrm{~mA}$
Voltage Range	7 to 24 VDC

Namur Wiring Diagram (44)

Specifications and Ratings

SST Switching Sensors (33)

Configuration	(2) Two wire solid state Switching outputs (1) or (2) Solenoid Power Input(s)
Output	Normally Open (SPST)
Maximum Current	
Inrush	2.0 Amps
Continuous	0.25 Amps
Min. On Current	2.0 mA
Max. Leakage Current	0.5 mA
Voltage Range	20 to 125VDC/125VAC
Max. Voltage Drop	7.0 Volts @ 100 mA
Short Circuit	Protected from Direct Application of up to 125 VDC/VAC

SST Wiring Diagram (33) Single Solenoid

SST Wiring Diagram (33) Dual Solenoid

Dual Modules - Switching \& Namur (Eclipse, Prism, \& Quartz)

SST \& Namur Dual Modules

The Dual Module integrates two separate sensor circuits and solenoid wire terminations in a fully sealed module. Sensor circuits are available in either SST switching or Namur outputs. Each SST sensor circuit and each Namur sensor circuit are electrically isolated. Although they are packaged together they operate independently.

Specifications and Ratings SST Switching Sensors (33)	
Configuration	(2) SST Solid State
	Sensors
	(2) Wire Terminations
Operation	Cam Selectable NO or NC
Maximum Current	
Inrush	2.0 Amps @ 125 VAC/VDC
Continuous	0.3 Amps@ 125 VAC/VDC
Minimum On Current	2.0 mA
Max Leakage Current	0.5 mA
Voltage Range	18 to 125 VDC
	24 to 125 VAC
Maximum Voltage Drop	6.5 Volts @ 10 mA
	7.0Volts @ 100 mA

SST Wiring Diagram (33)

Namur Sensors (44)

Configuration	(2) Namur Sensors
	(2) Wire Terminations for One Solenoid
Voltage Range	6 to 29 VDC
Current Ratings	Target On $\mathrm{I}<1 \mathrm{~mA}$
	Target Off $\mathrm{I}>3 \mathrm{~mA}$
Temperature Range	-40° to $82^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
Warranty	Five Years
Operating Life	Unlimited

(Use Namur sensor with intrinsic safety repeater barrier. Conforms to DIN 19234 standard.)

Namur Wiring Diagram (44)

Proximity Sensors (Quartz)

SST Switching

Sensor

Solid state SST proximity sensors are ideal for use in AC and DC computer input circuits. They are robust and well suited for general applications in control

SST Switching Sensors (_X)
Operation

Maximum Current	
Inrush	2.0 Amps @ 125 VAC/VDC
Continuous	0.3 Amps@ 125 VAC/VDC
Minimum On Current	2.0 mA
Leakage Current	Less than 0.50 mA
Voltage Range	8 to 125 VDC
Maximum Voltage Drop	$\begin{aligned} & \text { 6.5 Volts@ } 10 \mathrm{~mA} \\ & \text { 7.0 Volts@ } 100 \mathrm{~mA} \end{aligned}$
Temperature Range	-40° to $82^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
Operating Life	Unlimited

Specifications and Ratings

Maxx-Guard Proximity Switch (G, H, M \& S)
Single-Pole Double-Throw (SPDT)

Temperature Range	-40° to $82^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to 180° F)
Seal	Hermetically Sealed
Operating Life	5 Million Cycles
Warranty	Two Years

G Switch

Configuration	SPDT
Electrical Ratings	0.30 Amp @ 24VDC
	0.2 Amp @ 120VAC
Max. Voltage Drop	0.1 Volts @ 10mA
	0.5 Volts @ 100mA
Contact Composition	Rhodium

H Switch

Configuration	SPDT
Electrical Ratings	240 VAC max; 3 Amp max
	100 Watts max; 2.0 Watts min
Max. Voltage Drop	0.1 Volts @ 10mA
	0.5 Volts @ 100mA
Contact Composition	Tungsten

M Switch

Configuration	SPDT; Passive (Intrinsically Safe)
Electrical Ratings	0.15 Amp @ 24VDC
Max. Voltage Drop	0.1 Volts @ 10mA
	0.5 Volts @ 100mA
Contact Composition	Rhodium

S Switch

Configuration	SPDT (LED)
Electrical Ratings	0.30 Amp @ 125VAC
Max. Voltage Drop	3.5 Volts @ 10 mA
	6.5 Volts @ 100 mA
Contact Composition	Tungsten

P Switch	
Configuration	SPST
Electrical Ratings	0.15 Amp @ 30VDC/125VAC
Max. Voltage Drop	0.1 Volts @ 10mA
	0.5 Volts @ 100mA
Contact Composition	Ruthenium

Mechanical Switches and Transmitters (Quartz)

Mechanical Switch (SPDT)
Low cost single-pole doublethrow mechanical switches with silver contacts are recommended for high power 125 VAC applications. Gold contacts may be used in 30 VDC computer input applications.

Specifications and Ratings

Silver Contacts (V Function)

Electrical Ratings	$10 \mathrm{Amp} @ 125 / 250$ VAC
	$0.5 \mathrm{Amp} @ 125 \mathrm{VDC}$
Temperature Range	-40° to $82^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
Operating Life	400,000 Cycles

Not recommended for electrical circuits operating at less than 20 mA @ 24VDC.

Gold Contacts (W Function)

Electrical Ratings
Temperature Range
Operating Life
1.0 Amp @ 125 VAC
0.5 Amp @ 30 VDC
-40° to $82^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
100,000 Cycles

14 Function

Electrical Ratings
Temperature Range
Operating Life
4.5 Amp @ 125/250 VAC -40° to $82^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$ 250,000 Cycles

Not recommended for electrical circuits operating at less than 20 mA @ 24VDC.

4 to 20 mA

Position Transmitter
Position transmitters provide a precise 4 to 20 mA signal on a two wire DC loop. Control valves and dampers are accurately monitored through their range of travel offering you assurance of exact valve position at all times. Select a standard potentiometer or a vibration proof, high-performance potentiometer on your position transmitter.

Load Curve

Output

Supply Source
Span Range*
Maximum Loading
Linearity Error
Standard (5)
High Perf. (7)
Cycle Life
Standard (5)
High Perf. (7)
Vibration Tolerance
Standard (5)
High Per. (7)
Temperature Range

Acceptable

Outstanding
*Please consult factory for higher spans.
10-40 VDC
$+/-0.85^{\circ}$ Maximum
$+/-0.35^{\circ}$

Two Wire 4 to 20 mA
35° to 270° (Adjustable)
700 Ohms @ 24 VDC

Electrical Schematic

