Leading Technologies for Control

OPTIMUX® XL Series

OpEXL Eccentric Plug Valves

www.optimux.com

Flow Control Products

OPTIMUX[®]

OpEXL Control Valve Introduction

Rotary control valves have become one of the best control valves' choices in the market, mostly due to their capacity to handle large flows, superior rangeability, compact sizes and their shaft sealing design, all these characteristics provide a wide range of process solutions for most of control valves' industrial plant applications.

The **OpEXL** eccentric plug rotary control valve has been designed as a simple but yet robust, lightweight, and more economically-built alternative to our well known Exc Series, eccentric plug rotary valve design.

Our **OpEXL** was designed to comfortably handle differential pressures of up to 725 psi (50 bar), temperature ranges from -150° F to 752° F (-100° C to 400° C), in sizes from 1" to 4", and body class ANSI 150-300 or DIN PN 16-40.

The **OpEXL** eccentric plug provides an excellent rangeability 160:1, which is significantly higher than that of globe valves; 50:1 or 20:1 displayed in most butterfly valves. Several reduced trim sizes are also available for each valve size. These trim reductions offer a wider range of C_V values for every body size selection which enhances optimal sizing alternatives during the engineering application and selection process.

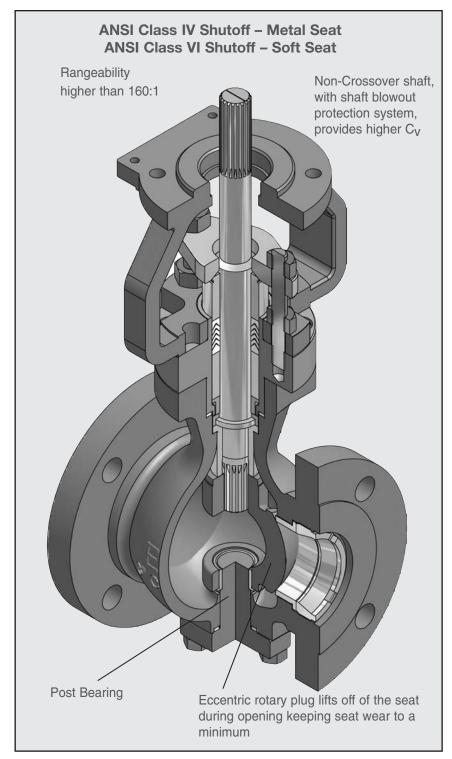
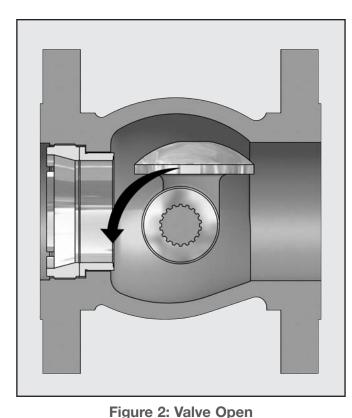
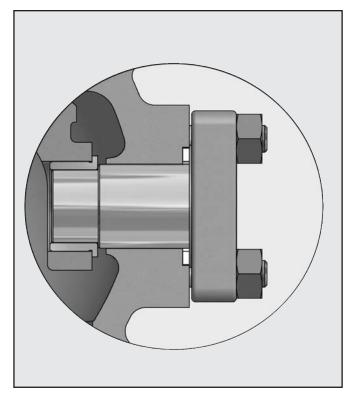




Figure 1: OpEXL Eccentric Plug Rotary Control Valve

(1)

OpEXL Construction/Seating

Figure 3: Post Bearing

Design Characteristics

Designed with a rugged and well sized non-cross-over shaft, higher flow capacities can be achieved for every valve size. This superior quality design characteristic eliminates potential damage caused by corrosive and/or heavy slurry processes.

In most conventional rotary control valves the shaft crosses over the valve stream line therefore causing a significant reduction in flow capacity and additionally causing unnecessary wear of the shaft. The **OpEXL** valve configuration assures a higher Cv capacity. While in the open position the streamlined fluid flow is not affected since the plug is kept totally retracted and away from the natural flow of the medium.

When the plug moves to the closed position, and due to its double-eccentricity configuration, the plug slides easily into its seat in such an angle that eliminates any direct metal-to-metal contact with its seat. This unique design characteristic contributes to drastic reductions of seat wear, therefore, less maintenance and service requirements.

As the valve opens and the eccentric plug slides smoothly off the seat, the possibility for the water-hammer effect to occur is greatly reduced, this is mainly due to the "zero breakout torque" characteristics provided by the **OpEXL** eccentric plug. This "zero-breakout torque" feature also allows for the selection and usage of smaller actuators which translates into less initial costs and life-time-maintenance costs.

Our valve design engineers have combined in one valve excellent features such as a large dimensioned post bearing system (Fig. 3), and a well sized shaft and plug made in hardened 17-4Ph as a standard, which together provide excellent tight shutoff characteristics as well as increased life expectancy of the inner parts of this assembly.

The **OpEXL** displays a large size packing box which complies to EPA* requirements and a shaft system that complies with ANSI B 16.34 standards, built in such a way as to prevent shaft blowout when the valve is still under pressure. Reduced trim sizes 70%, and 40% are offered to obtain a wide range of flow capacity.

*EPA = U. S. Environmental Protection Agency

OpEXL Actuators/Positioners

RA Piston Cylinder Actuators

Optimux's Series RA Piston-Cylinder-Rotary-Actuators are an excellent actuation choice to obtain maximum performance of our **OpEXL** eccentric plug control valves. The Optimux Series RA piston cylinder rotary actuators with fail-safe spring combine high torques with pneumatic stiffness which together deliver excellent throttling characteristics. The Series RA compared to regular spring-diaphragm actuators, are lightweight, compact, efficient and in general, they take a smaller foot-print for installation in pipelines, they are simply, one of the best choices in actuation systems for rotary control valves.

The Series RA piston cylinder actuators are offered as a standard for all of our Rotary valves: Series VB, and Series Dx.

The Optimux Series RA piston cylinder actuator was designed to work with supply pressures of up to 150 psi (10.3 bars), which significantly increases torque capacity. The Series RA performance and reliability in the field has no par, as it has proven life service above one million cycles.

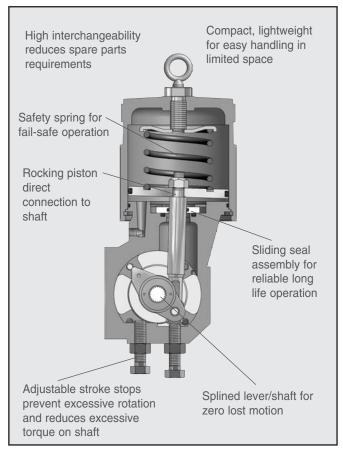


Figure 4: RA Rotary Actuator

The pneumatic stiffness achieved by the Series RA assures excellent throttling and control characteristics specially in near closing control positions.

Туре	Double-acting piston and cylinder with fail-safe spring
Sizes	25, 50
Action	Air-to-open Air-to-close Last position Field reversible
Operating Pressure	Max 150 psig Max 10,3 bars
Stroking Speed	≤ 1 second
*Temperature Range	-40° to 350°F (-40° to 175° C)
Auxiliary Handwheels	Declutchable side-mounted handwheel Lever-gear operated handwheel Lever operator
Positioners	Digital HPP-3000 Digital HPP-3500

Table I: Rotary Actuator Specifications

Table II: Construction Materials

Yoke	Ductile iron
Transfer Case	Anodized aluminum
Splined Lever Arm	Nickel-plated ductile iron
Stem	UNS S 41600 Stainless Steel
Bearings	Filament wound fiberglass with Teflon liner
Sliding Seal	Delrin, aluminum
Retaining Ring	Cadmium plated steel
Piston	Anodized Aluminum
Cylinder	Anodized Aluminum
O-Ring*	Buna-N (standard)
Actuator spring	Coated steel (rust proof)
Spring button	Cadmium-plated steel

* Ambient temperatures higher than 180° F (82° C) require Viton O-rings. Ambient temperatures below -40° F (-40°C) require fluorosilicone O-rings.

OpEXL Rotary Actuators, Features and Characteristics

RPA Rack and Pinion Actuators

Optimux's Series RPA represent an excellent alternative to our RA Piston-Cylinder Series for rotary valves applications. As with the RA Series the RPA actuators are compact, allow for field reversibility, provide adequate torque for most standard applications and are easy to maintain. RPA actuators are designed for extremely long cycle life when utilized in normal loading applications. The RPA actuators will take service temperatures of -10° to 275° F (-23° to 135° C).

The Series RPA actuators are also offered for all our rotary valves: Series DX and Series VB.

PSI	40	60	80	100	120
RPA052	263	395	526	658	789
RPA148	740	1,109	1,479	1,849	2,219
RPA222	1,109	1,664	2,218	2,773	3,327
RPA470	2,071	3,106	4,142	5,177	6,213
RPA900	4,550	6,825	9,100	11,375	13,650

Table III: Double Acting Torque Values (in. Lbs)

* Other model numbers and torque options are also available

Optimux HPP3000 Smart Valve Positioners

The HPP3000 is a high performance microprocessor-based, current-to-pneumatic HART® positioner which also has available options such as Foundation[™] Fieldbus, DE, and standard 4-20mA.

This smart positioner incorporates state-of-the-art features such as: Automatic configuration, split range options, 16 points of characterization, self-diagnostics, etc, all contributing to increase productivity and efficiency in industrial plants.

The HPP3000 is FM/CENELEC/NEPSI/CSA certified for explosion proof and intrinsically safe requirements. For more information please refer to Optimux HPP3000 technical bulletin: *TB-HPP3000-07-04*.

Optimux HPP3500 Smart Valve Positioners

The HPP3500 delivers all the same technical benefits and characteristics as of our HPP3000, however the HPP3500 was specially designed to conform the needs of most rotary actuated valves, such as smaller footprint requirements and specific mounting options such a NAMUR. The HPP3500 is intrinsically safe and is certified by FM/CENELEC/ATEX. For more information please refer to Optimux HPP3500 technical bulletin: *TB-HPP3500-07-04*.

The HPP3000 and HPP3500 in combination with our rotary actuators: RA and RPA, deliver the highest level of control accuracy and responsiveness of the industry.

Figure 5: RPA Rack and Pinion Actuator

Figure 6: HPP3000 Digital Series

OpEXL Construction Materials

Built For High Performance

Manufactured with a rugged oversized shaft and post bearing, the **OpEXL** rotary control valve prevents damages that may occur on its own shaft.

The rotary plug is manufactured in its standard configuration with 17-4 PH heat hardened stainless steel, however the inner parts assembly can be also constructed in solid Alloy #6 type steel, providing for an excellent tight shutoff and enhancing its use in a wide range of applications such as in flashing conditions, corrosive services, mild cavitation, and steam services as well.

The non-crossover shaft design, a characteristic of the **OpEXL** eccentric plug rotary control valve pervents the line from clogging, assuring an uninterrupted flow passage. When the valve is in the open position, the flow is not diverted to the seat or seat retainer, delivering excellent performance even after several years of operation.

The connection between the plug and the shaft is achieved via a tight and precise splined connection, eliminating the use of keys and/or taper pins which are prone to corrosion and/or wear due to vibration. The rugged, rigid and heavy-duty seat design is excellent for applications where the valve is subjected to high pressure drops.

The typical maintenance cycle of the **OpEXL** exceeds the period of five years and the service life expectation exceeds a period of twenty years.

Size (inches)	1; 1.5; 2; 3; 4 DN 25; 40; 50; 80; 100
End Connection	Flanged RF
Finish	125-250 Rc standard
Rating class	ANSI Class 150-300 DN PN 16-40
Face-to-face dimension	ISA S75.04
Seat Area	Full 100% Reduced 70% Reduced 40%
Leakage Class	ANSI Class IV – metal seat ANSI Clas VI – soft seat
Operating Temperature	-150° F to 752° F (-100°C TO 400°C)

Table IV: Body Specifications

After a detailed analysis of the OpEXL control valve under the reliability viewpoint, other considerations should be added to its performance such as: it can provide a flow capacity of up to 70% higher when compared to the eccentric plug rotary valves of other manufacturers. The OpEXL can be installed in processes handling paper pulp concentration of up to 3% due to its non-crossover shaft design. The valve design permits the valve to withstand a pressure drop of up to 725 psi (50 bars) in the closed position. It also allows the valve to be installed with shaft upstream or downstream. Reduced trim areas of 70% and 40%. Leakage class ANSI Class IV with metal seat and Class VI with soft seat. Shaft blowout protecting system eliminates the risk of personal injury caused by fluid pressure, fires and process interruptions do to accidents. Plug rotation of 90 degrees with the use of a high performance double-acting rotary cylinder piston fail-safe spring actuator.

Table V: Flow Direction

Installation	Flow	Application
Standard	Shaft downstream flow into the convex plug face	Clean fluid No cavitation
Reversed	Shaft upstream flow onto the outward plug face	Fluid with entrained particles, cavitation or flashing

Table VI: Packing Temperature Limitations

Type of Material	Temperature			
of Material	°F	°C		
"V"-rings – PTFE	-150 to 450	-101 to 232		
Braided PTFE	-20 to 500	-28 to 260		
Grafoil	-20 to 752	-28 to 400		
PT	-20 to 450	-28 to 232		
PTG	-20 to 450	-28 to 232		
PTG XT	-20 to 550	-28 to 288		

*Pressure class versus body material limitations must not be exceeded

(5)

Part	Material		Specifications	
	Classification	ASTM Code (AMS No.)	UNS Code	Hardness Rc
Body	Carbon steel – Cast	A 216 WCB	J 03002	
Plug	17-4PH – Cast	A 747, Gr CB7-Cu-1	J 92180	35-38 C
	Alloy #6 – Cast	AMS 5387	R 30006	40-42 C
Shaft	17-4 PH – Bar	A 564 Gr 630	S 17400	35 C
Post	17-4 PH – Cast	A 747 Gr CB7-Cu-1	J 92180	35-38 C
Bearings (shaft/plug)	440C – Bar	A 276	S 44004	55-60 C
Seat retainer	316 – Cast	A 351 Gr CF8M	J92900	
Metal seat	316 – Bar	A 479 Gr 316	S 31600	
	420 – Cast	A 743 Gr CA40	J 91160	38-45
	Alloy #6 – Cast	AMS 5387	R 30006	40-42 C
Soft seat	316 – Bar / PTFE	A 479 Gr 316	S 31600	
Thrust bearing	316 – Bar / 440 Bar	A 479 Gr 316 / A 276	S 31600 / S 44004	55-60 C
Gland flange	316 – Cast	A 351 Gr CF8M	J 92900	
Packing follower	316 – Bar	A 479 Gr 316	S 31600	
Packing spacer	316 – Bar	A 479 Gr 316	S 31600	

Table VII: Standard Construction Materials Carbon Steel Sub-assembly

Table VIII: Standard Construction Material Stainless Steel Sub-assembly

Part	Material		Specifications	
Fall	Classification	ASTM Code (AMS No.)	UNS Code	Hardness Rc
Body	316 – Cast	A 351 Gr CF8M	J 92900	
Plug	17-4PH – Cast	A 747, Gr CB7-Cu-1	J 92180	35-38 C
	Alloy #6 – Cast	AMS 5387	R 30006	40-42 C
Shaft	17-4 PH – Bar	A 564 Gr 630	S 17400	35 C
Post	17-4 PH – Cast	A 747 Gr CB7-Cu-1	J 92180	35-38 C
Bearings (shaft/plug)	Duplex – Cast	A 890 4A	J 92205	15-25
Seat retainer	316 – Cast	A 351 Gr CF8M	J92900	
Metal seat	316 – Bar / CVD-5B	A 479 Gr 316	S 31600	72 C
	Alloy #6 / CVD-5B	AMS 5387	R 30006	40-42 C / 72 C
Soft seat	316 – Bar / PTFE	A 479 Gr 316	S 31600	
Thrust bearing	316 – Bar / Duplex 2205	A 479 Gr 316 / A 890	S 31600 / J 92205	16 / 15-25
Gland flange	316 – Cast	A 351 Gr CF8M	J 92900	
Packing follower	316 – Bar	A 479 Gr 316	S 31600	
Packing spacer	316 – Bar	A 479 Gr 316	S 31600	

OpEXL Body Materials

Table IX: Body Pressure and Temperature Limitations (ANSI 16.34)

Material	End	Pres	sure	Temperature		
Waterial	Connections	PSI	Bar	°F	°C	
ASTM A-216 Gr. WCB	ANSI 150#	285	19,7	-20 to 100	-29 to 38	
Carbon Steel		260	17,3	200	93	
		250	17,2	300	149	
		245	16,9	400	204	
		230	15,9	500	260	
		210	14,5	600	316	
		205	14,1	650	343	
		195	13,4	750	399	
		725	50,0	-20 to 100	-29 to 38	
	ANSI 300#	675	46,5	200	93	
		655	45,2	300	149	
		635	43,8	400	204	
		600	41,4	500	260	
		545	37,6	600	316	
		535	36,9	650	343	
		505	34,8	750	399	
		275	19,0	-20 to 100	-29 to 38	
ASTM A-351 Gr. CF8M	ANSI 150#	205	14,1	200	93	
Stainless Steel		185	12,8	300	149	
		175	12,1	400	204	
		170	11,7	500	260	
		165	11,4	600	316	
		160	11,0	750	399	
		725	50,0	-20 to 100	-29 to 38	
	ANSI 300#	535	36,9	200	93	
		485	33,4	300	149	
		455	31,4	400	204	
		450	31,0	500	260	
		435	3,0	600	316	
		430	29,7	650	343	
		420	29,0	700	371	
		410	28,3	750	399	

Table X: Maximum Pressure Drop*

Nomin Siz	al Valve ze	Shaft Diameter		Seat Diameter (Full Area Trim)		Maximum P 90 Degrees (Bidirectiona	
Inches	DIN	Inch	mm	Inch	mm	PSI	Bar
1	DN 25	0.44	11	.70	17,98	725	50
1.5	DN 40	0.62	16	1.1	27,98	725	50
2	DN 50	0.62	16	1.36	34,75	725	50
3	DN 80	0.90	23	2.35	59,92	725	50
4	DN 100	0.90	23	3.03	76,95	725	50

*The maximum allowable pressure drop is based upon shaft mechanical resistance, however, it is limited to the pressure class. Standard limitations according to the pressure class should not be exceeded.

OpEXL Packings

The **OpEXL** rotary valve is built with a large packing box which gives a longer service life to the packing assembly. The **OpEXL** Packing box design allows for the use of a large number of packing system options, and fully complies with the most demanding fugitive emission control regulations in modern industrial processes.

Standard Packing

The **OpEXL** standard packing set is composed by PTFE "V" rings, Figures 8A and 8B. The PTFE "V" rings are the most used packing system since their introduction, providing exceptional tight sealing. They provide a very low friction coefficient, good mechanical resistance and excellent resistance to corrosion. The PTFE "V" rings are the most common application choice for gasketing material.

The PTFE "V" rings are used within temperature ranges of 150° to 450°F (-101 to 232° C). High Temperature Packing The **OpEXL** formed packing rings, Figures 9A and 9B, is an alternative choice whenever the operating temperature exceeds that determined for the use of PTFE "V" rings. The materials employed in the formed packing rings of the **OpEXL** are braided PTFE for use in temperatures up to 500°F (260°C) and Grafoil for use in temperatures up to 752°F (400°C). The Grafoil formed packing rings are an excellent choice whenever packing is subjected to high operating temperatures, however it should be noted that the demand of high forces required to achieve a tight sealing results in a significant friction increase forces as the valve plug turns.

Special Packing

The PT type packing set, Figure 10A, is composed by a set of "V" type rings under compression by an assembly of disc springs that result in a "live-loading" effect. This system achieves a sealing level of below 500 ppm. The PT type packing combines the superior virgin PTFE "V" rings quality with the PTFE "V" rings combined with carbon filament wound. The PTG type packing, Fig. 10B, is composed of an advanced packing set that is capable of keeping a sealing rate very below 500 ppm (at a 10 ppm step rate). The PTG packing set is composed by the combination of PTFE "V" rings with carbon filament wound and Kalrez® "V" rings, an advanced material that provides a superior performance to the packing set. For temperatures higher than 450°F (232° C) the PTG XT packing set is employed. This type of packing utilizes Zymax® rings instead the PTFE/carbon rings.

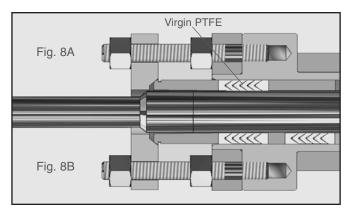


Figure 8A: Standard Packing: "V" rings Figure 8B: Double Packing: "V" rings

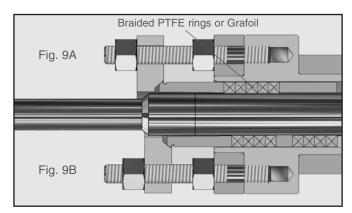


Figure 9A: Packing: Formed Rings Figure 9B: Double Packing: Formed Rings

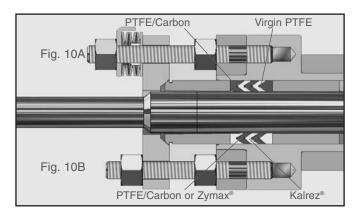


Figure 10A: PT Packing Set Figure 10B: PTG Packing Set

OpEXL Specifications/Selection

Valve		Air	Actuator Size											
Nominal		ipply		25					50					
Size	Pre	ssure		Trim	Area				Trim Area					
(Inches)			10	0%	70	%	4	0%	10	0%	70%		40	%
	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar
1	40	2,7	725	50,0	725	50,0	725	50,0						
	60	4,1	725	50,0	725	50,0	725	50,0						
	80	5,5	725	50,0	725	50,0	725	50,0						
	100	6,9	725	50,0	725	50,0	725	50,0						
	150	10,3	725	50,0	725	50,0	725	50,0						
1.5 & 2	40	2,7	725	50,0	725	50,0	725	50,0						
1.5 & 2	60	4,1	725	50,0	725	50,0	725	50,0						
	80	5,5	725	50,0	725	50,0	725	50,0						
	100	6,9	725	50,0	725	50,0	725	50,0						
	150	10,3	725	50,0	725	50,0	725	50,0						
3	40	2,7	350	24,1	500	34,5	690	47,6	685	47,2	725	50,0	725	50,0
	60	4,1	500	34,5	650	44,8	725	50,0	725	50,0	725	50,0	725	50,0
	80	5,5	620	42,7	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0
	100	6,9	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0
	150	10,3	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0
4	40	2,7	210	14,5	295	20,3	410	28,3	400	27,6	580	40,0	725	50,0
	60	4,1	300	20,7	415	28,6	580	40,0	580	40,0	725	50,0	725	50,0
	80	5,5	375	25,8	530	36,5	725	50,0	725	50,0	725	50,0	725	50,0
	100	6,9	445	30,7	625	43,1	725	50,0	725	50,0	725	50,0	725	50,0
	150	10,3	530	36,5	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0

Table XI: Maximum Allowable Pressure Actuator versus Supply Pressure (PSI/Bar)

Note: The pressure limitations should be limited to the body and flanges pressure class.

Table XII: Seat Maximum Pressure Drop

Type of Seat	Process Open Position			Closed Position		
Type of Seat	Medium	PSI	Bar	PSI	Bar	
Metal Seal	Liquids, Vapors	363	24,7	725	50,0	
Metal Seal	Gases	725	49,3	725	50,0	
Soft Seal	Liquids, Vapors	145	9,8	725	50,0	
Soft Seal	Gases	290	19,7	725	50,0	

Note: Pressure limitations should be limited to body and flange pressure classes.

Table XIII: Yoke Gasket/Post Bearing Maximum Pressure/Temperature

Gasket	Pres	sure	Temperature			
Material	PSI	Bar	PSI	Bar		
PTFE	725	50	350	186		
316 SS/Grafoil	725	50	752	400		

Table XIV: Trim Material

Body Sub-assembly Carbon Steel

Plug	Seat	Bearings	Shaft	Post Bearing
17-4 PH	316 Stainless steel	440C Stainless steel	17-4 PH	17-4 PH
17-4 PH	420 Stainless steel	440C Stainless steel	17-4 PH	17-4 PH
Alloy #6	Alloy #6	440C Stainless steel	17-4 PH	17-4 PH

Body Sub-assembly Carbon Steel – NACE

Plug	Seat	Bearings	Shaft	Post Bearing
Alloy #6	316 Stainless steel	Duplex 2205	A 453 Gr 660	A 453 Gr 660
Alloy #6	Alloy #6	Duplex 2205	A 453 Gr 660	A 453 Gr 660

Body Sub-assembly Stainless Steel

Plug	Seat	Bearings	Shaft	Post Bearing
17-4 PH	316 Stainless steel	Duplex 2205	17-4 PH	17-4 PH
Alloy #6	Alloy #6	Duplex 2205	17-4 PH	17-4 PH

Body Sub-assembly Stainless Steel – NACE

Plug	Seat	Bearings	Shaft	Post Bearing
Alloy #6	316 Stainless steel	Duplex 2205	A 453 Gr 660	A 453 Gr 660
Alloy #6	Alloy #6	Duplex 2205	A 453 Gr 660	A 453 Gr 660

OPTIMUX[®]

Fluid	Plug	Seat	Bearings	Flow Direction
Industrial Air and Liquids*	17-4 PH	AISI 316	440C; Duplex 2205	Shaft downstream
Liquid Hidrocarbon	17-4 PH	AISI 316	440C; Duplex 2205	Shaft downstream
	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft downstream
Clean Gases	17-4 PH	AISI 316	440C; Duplex 2205	Shaft downstream
Clean Liquids	17-4 PH	AISI 316	440C; Duplex 2205	Shaft upstream
Clean Liquids w/Cavitation or Flashing	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft upstream
Liquids not clean, Slurry or Abrasive	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft upstream
Liquids not clean, w/Cavitation or Flashing	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft upstream
Non-corrosive Chemical Products	17-4 PH	AISI 316	440C	Shaft downstream
Corrosive Chemical Products	Alloy #6	AISI 316	Duplex 2205	Shaft downstream
	Alloy #6	Alloy #6	Duplex 2205	Shaft upstream
Water Stream – 150 PSI	17-4 PH	AISI 420	440C	Shaft downstream
Water Stream – 300 PSI	Alloy #6	Alloy #6	440C	Shaft downstream

Table XV: Recommended Application

* Except O₂

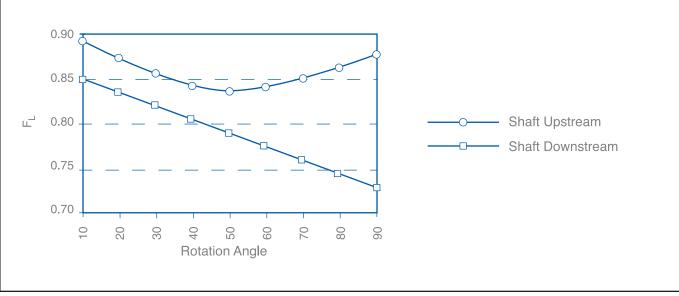
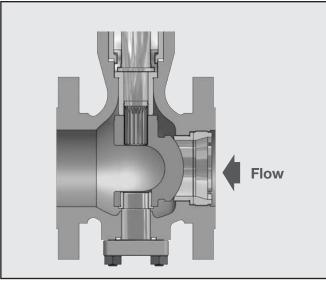


Figure 11: Pressure Recovery Factor, FL: OpEXL Eccentric Plug Rotary Control Valve

Piping Size Effect on Valve C_V Coeficient

The nominal C_V values indicated on the Tables XVI and XVII are considered for a line size valve installation, where inlet/outlet pipe and valve sizes are the same. When the valve is concentrically installed in pipelines with higher nominal sizes, the C_V coeficient is affected and should be multiplied by the "PCF" factor in Table XV.


Table XVI: C_V Correction Factor

Trim Area	Piping Correction Factor, PCF - d/D*											
%	0.4	.05	.06	.06 0.7		.09	1					
100			0.91	0.94	0.97	0.99	1					
70	0.93 0.94		0.96	0.97	0.98	0.99	1					
40	0.98	0.98	0.99	0.99	0.99	0.99	1					

* d = Nominal Valve Size

D = Larger Piping Size

OpEXL Flow Coefficient: C_V

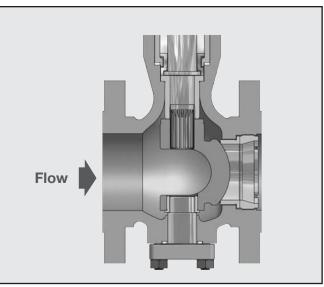
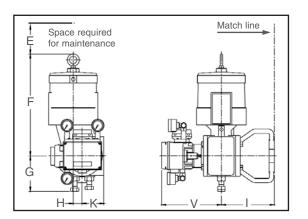


Figure 12: Shaft Downstream

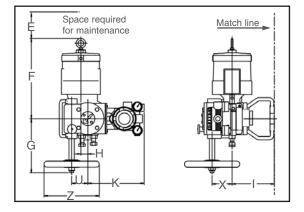
Figure 13: Shaft Upstream

Trim Area	Opening				Valve	Nominal	Size (Inch)				
%	Angle		1	1	.5		2		3	4	1
70	Angie	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft
	90	18	10	47	39	80	17	245	245	408	408
	80	17.7	9.8	44	37	78	69	224	224	380	380
	70	17.4	9.7	40	33	64	57	186	186	309	309
	60	15.9	8.8	34	28	53	47	150	150	245	245
100	50	13.3	7.4	29	24	43	38	126	126	207	207
	40	10.4	5.8	22	18	35	31	99	99	162	162
	30	7.6	4.2	16	13	26	23	73	73	118	118
	20	4.2	2.4	9.2	7.6	15	13	41	41	66	66
	10	2.1	1.2	4.5	3.7	5	4	21	21	33	33
70	90	13	7	33	33	53	53	182	182	269	269
40	90	7	6	19	19	32	32	104	104	170	170


Table XVIII: Maximum Flow Capacity (C_V) - Shaft Upstream

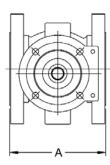
Trim Area	Opening				Valve	Nominal	Size (Inch)				
%	Angle		1	1	.5		2		3	4	
70	Aligio	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft
	90	21	12	50	40	78	69	218	218	305	305
	80	20.6	11.8	48	38	74	65	198	198	295	295
	70	19.5	11.1	44	35	66	58	170	170	263	263
	60	17.7	10.1	40	32	55	49	142	142	225	225
100	50	15.7	9.0	33	26	45	40	115	115	183	183
	40	12.5	7.1	26	21	36	23	92	92	146	146
	30	9.1	5.2	19	15	26	17	67	67	106	106
	20	5.4	3.1	11.5	9.2	15	13	40	40	63	63
	10	2.0	1.1	4.2	3.4	4.7	4.2	15	15	23	23
70	90	15	8	35	35	55	55	167	167	223	223
40	90	8	6	20	20	31	31	68	68	150	150

OpEXL Eccentric Plug Rotary Control Valves



OpEXL Actuator Sub-assembly Dimensions

Actuator		Dimensions (inches / mm)														
Size	Е		F		G		н		Т		к		v			
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm		
25	6.0	152	13.1	334	4.6	116	1.1	29	6.8	174	2.9	74	7.7	196		
25 EF	9.3	236	17.4	441	4.6	116	1.1	29	6.8	174	2.9	74	7.7	196		
50	8.0	203	18.1	461	5.6	144	2.0	51	6.8	174	3.8	96	7.7	196		
50 EF	9.8	249	24.0	609	5.6	144	2.0	51	6.8	174	3.8	96	7.7	196		


Fig. 14: RA Series Actuator with HPP3500 Positioner

Actuator	Dimensions (inches / mm)															
Size	F		(G	l	н		Т		к		U		х		z
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
25	13.1	334	8.9	226	1.1	29	6.8	174	9.2	233	2.6	67	3.3	83	9.0	228
25 EF	17.4	441	8.9	226	1.1	29	6.8	174	9.2	233	2.6	67	3.3	83	9.0	228
50	18.1	461	9.4	238	2.0	51	6.8	174	10.1	256	3.4	86	3.3	83	12.0	305
50 EF	24.0	609	9.4	238	2.0	51	6.8	174	10.1	256	3.4	86	3.3	83	12.0	305

Fig. 15: RA Series Actuator w/ Handwheel & HPP3000 Positioner

OpEXL Body Sub-Assembly Dimensions

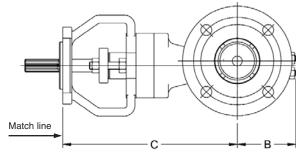


Fig. 16: OpEXL Body Sub-assembly

	Dimensions		Valve Size (Inches)				
Dimensions			1	1.5	2	3	4
	150	in.	4.0	4.5	4.9	6.5	7.6
A		mm	102	114	124	165	194
	300	in.	4.0	4.5	4.9	6.5	7.6
		mm	102	114	124	165	194
	150	in.	2.7	2.8	2.9	4.0	4.2
В		mm	69	71	74	102	107
D	300	in.	2.7	2.8	2.9	4.0	4.2
		mm	69	71	74	102	107
	150	in.	8.7	9.8	9.8	12.0	12.2
С		mm	222	248	250	304	309
0	300	in.	8.7	9.8	9.8	12.0	12.2
		mm	222	248	250	304	309

OpEXL

The information and specifications described in this brochure are considered accurate, however, they are intended for information purpose only and should not be considered as certified information.

Considered that Optimux products are continuously improved and upgraded, specifications, dimensions, and information described herein are subject to change without notice.

For further information or verification, consult your Optimux representative. Specific instructions for the installation, operation, troubleshooting and maintenance of the OpEXL control valves are contained on the OpEXL Maintenance bulletin.

Manual. Teflon, Kalrez and Zymax are trade marks of E. I. DuPont Company.

For more information, visit our website at www.optimux.com

