Leading Technologies for Control

CAUTION Ive moves automatic Consult Manual before servicing 6.9 bar (100 psi) Maximum Air Pressu

OPTIMUX'

- Conner () and

OPTIMUX® EXC Series

OPEXC Eccentric Plug Control Valve

www.optimuxcontrols.com

Flow Control Products

100

OpExc Eccentric Control Valve

Introduction

The OpExc is a high performance rotary control valve characterized by its eccentric and innovative plug. The OpExc has been designed for optimal performance in a wide array of process control applications, such as: Low pressures, high Cv's, slurry fluids, Oil&Gas, etc. The OpExc operates comfortably under high shut-off pressure drop conditions as much as 100 bars (1450psig) and operating temperatures from -100C to 430C (-150F to 800F).

Its eccentric plug offers excellent and extended rangeability of 160:1 compared to 50:1 in a globe valve and 20:1 in the majority of the butterfly valves. The robustness of the OpExc reduces significantly common problems caused by knocking and battering.

The OpExc has low hysteresis as well as high strength on actuation and accurate control enhanced by the utilization of our piston actuator, which grants additional robustness to the complete assembly when compared to other actuators found in the market.

The OpExc has a very robust "not-through" shaft anchored by a fixed post in the other end, and which allows for uninterrupted flow of fluids. This characteristic increases Cv's up to 70% when compared to other valves displaying rotary plugs.

The OpExc is manufactured in diameters of 1" to 12" and comes in two types of bodies: With flanges (ANSI class 150, 300, and 600) and flangeless (ANSI class 150 and 300). The OpExc ability to handle large Cv's in normal or severe applications is unmatched by any other valve design in the Oil, Chemical, and Pulp & Paper industries. All these attributes make the OpExc the choice for many process control engineers.

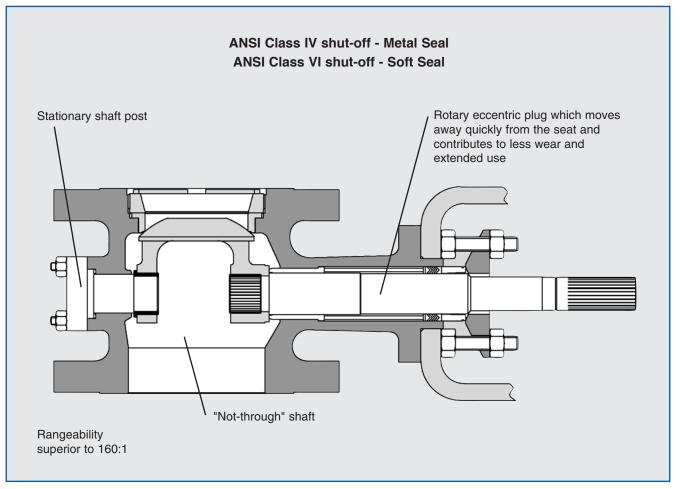


Figure 1: OpExc Rotary Plug Control Valve

OpExc Closing/Construction

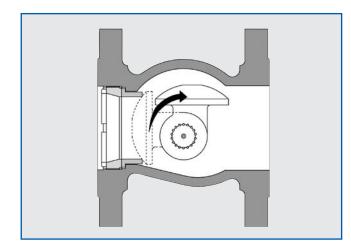
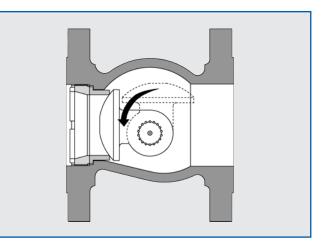



Figure 2: Opening Valve

Adjusted Closing, Low Maintenance

The valve configuration warrants a high flow capacity. In the open position (figure 2), the plug travels away from the center of the flow and direction, the shaft as well, stays out of contact.

As the valve opens and the plug turns away from the seat the possibility of knocking or battering is greatly reduced. The eccentric shape of the OpExc has zero breakout torque which allows the use of smaller actuators thus reducing costs and maintenance time.

Figure 3: Closing Valve

High C_v, Initial Zero Dynamic Par

The eccentric plug with double separation turns towards the seat up to a given angle that eliminates skidding over its own surface (figure 3). This type of design reduces wear of the seat and consequently the need for frequent maintenance and making the OpExc one of the highest performance valves for severe applications.

Due to the fact that plug and shaft do not constraint flow, it produces one of the highest CV's in the industry.

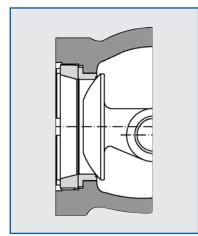


Figure 4: Integral Seat

Seats

The OpExc amply serves the demands of different flows. The internals are supplied with 100%, 70% in valves diameters from 1" to 12" and 40% in valves from 1" to 6".

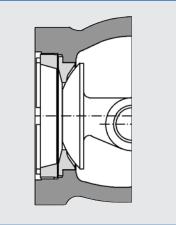
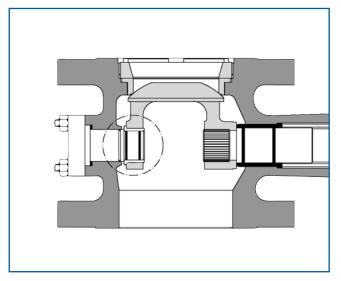


Figure 5: Reduced Seat

Figure 6: Soft Seat


Metal seats fulfill shut-off requirements for ANSI Class IV and ANSI Class VI, using soft seats.

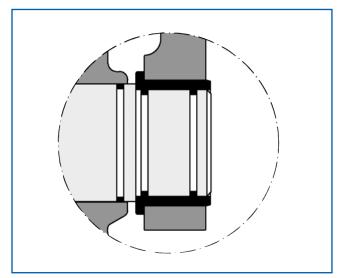
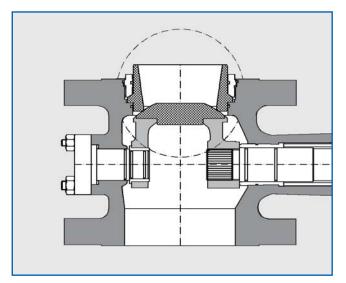
ορτιΜυχ

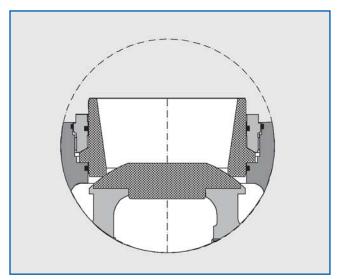
OpExc Special Constructions

Plugs

For slurry fluid applications the OpExc is manufactured with O-rings that control the emission of aggressive liquids to

the seal sets and the stationary shaft (figure 7).


Figure 7: Sealed System

Ceramic Internals

For solids in suspension fluid applications, the OpExc is furnished with a set of internals fabricated in high

resistance ceramic, to withstand the effects of abrasion and corrosion (figure 8).

Figure 8: Ceramic Internals

3

OpExc Construction Materials

Dependability

The shaft of the OpExc has been designed and built robust and oversized as to eliminate any possibility of failure. Its design offers ample contact between the shaft and its bearings, this way reducing unnecessary wear and increasing the life expectancy of the valve. The plug made of 17-4pH and hardened by thermal treatment provides excellent shut-off characteristics that broadens its applications such as flashings, corrosive fluids, medium cavitations, and water steam, in general.

The "not-through" shaft design eliminates obstructions to the fluids. When the valve is open, the fluid is not deviated towards the seat or to the seat retainer, which gives the OpExc high dependability even after many years of intensive use.

The union between shaft and plug is made via a well adjusted and precise splined system, which helps to eliminate the traditional pins or other mechanical elements conducive to corrosion and/or damages caused by vibrations. The strong seat allows the utilization of the OpExc under high differential pressures. For severe applications the plug and its seat can be fabricated with a surface partially or totally in stellite # 6.

In addition the packing set is placed away from the effects of the fluid, increasing its life under either low or high temperatures.

The typical maintenance cycle for the OpExc surpasses 5 years, and its life expectancy surpasses 20 years. Our OpTk actuators have a life superior to one million cycles, making the OpExc the most dependable valve.

Performance

CV capacity and rangeability of 160:1 far surpasses any other eccentric plug valve in the market.

Component	Standard N	Standard Materials					
	Carbon Steel Sub-Assembly	Stainless Steel Sub-Assembly					
Body*	Carbon Steel ASTM A 216 WCB/WCC	Stainless Steel ASTM A 351 CF8M					
Plug	A 564 Gr 630 (17-4 PH) 316 w/ Stellite #6	A 564 Gr 630 (17-4 PH) 316 w/ Stellite #6					
Shaft	A 564 Gr 630 (17-4 PH)	A 564 Gr 630 (17-4 PH)					
Shaft Post	A 564 Gr 630 (17-4 PH)	A 564 Gr 630 (17-4 PH)					
Bearings	AISI 440C & Sealed	Duplex 2205 & Sealed					
Packing Spacer	AISI 316	AISI 316					
Anti-Extrusion Ring	AISI 316	AISI 316					
Seat Retaining	AISI 316 Cr Plated (Screw)	AISI 316 Cr Plated (Screw)					
Metal Seat	AISI 316	AISI 316					
	AISI 316 with Stellite #6, 416HT	AISI 316 with Stellite #6, 416HT					
Soft Seat	PTFE	PTFE					
Packings	PTFE V-Ring braided	PTFE V-Ring braided					
	Asbestos free AFPI	Asbestos free AFPI					
	Grafoil	Grafoil					
	PT; PTXT	ΡΤ; ΡΤΧΤ					
	PTG	PTG					

4

Table I: Standard Construction Materials

* Other cast materials

OpExc Characteristics & Advantages

High Flow Coefficients, Cv

• Up to 70% higher than other valve models with rotary plugs. Also available with reduced internals.

Superior quality

Shaft and internals made of standardized materials.
 Withstands higher pressure drops than other valve models with rotary plugs.

Not-through shaft

- Shaft is placed away from the flow line which offers high Cv's and less wear caused by erosion.
- The OpExc can be used in pulp applications with concentrations of up to 3%.

Anti-Expulsion Security System

 Conventional rotary valves do not feature a shaft security system that avoids personal damages and operational risks.

Eccentric Rotary Plug

- Zero breakout torque requirement
- · Closing pressure warrants a high shutoff
- Plug moves off the seat instantly, causing considerable less wear.

Reinforced Plug Construction

· Higher resistance to intense knocking.

Precise Control Characteristics

 The plug profile permits for effortless rotation with no contact with the seat.

High Capacity for Control

• Rangeability higher than 160:1

Increased security

 The fluid flow will help on the fail position (open or close), in case of lack of air.

High pressure drops

• Due to its design the OpExc supports Delta P up to 100 Bars (1450 psi).

Bi-directional Closing

Valve can be mounted with shaft upstream or downstream.

Easy Serviceable Shafts and Plugs

- Easier maintenance
- Reduced costs by substitution of only damaged parts.

With Flanges

• ANSI Class 150, 300 y 600.

Without Flanges

• ANSI Class 150-300.

Reduced Internals

• Only one component changes for its utilization with reduced internals in 70% and 40% of area.

Excellent Shut Off Characteristics

- Metallic seat offers shut off ANSI Class IV
- Soft seat offers shut off ANSI Class VI

Multiple Options for Gaskets

- Materials and configurations available for most applications
- Options for emission controls fulfill EPA* norms

All these characteristics have made the OpExc a superior valve within its category.

5

*EPA (U.S. Environmental Protection Agency)

OpExc Actuators/Positioners

RA Piston Cylinder Actuators

Optimux's Series RA Piston-Cylinder-Rotary-Actuators are an excellent actuation choice to obtain maximum performance of our **ExL** eccentric plug control valves. The Optimux Series RA piston cylinder rotary actuators with fail-safe spring combine high torques with pneumatic stiffness which together deliver excellent throttling characteristics. The Series RA compared to regular spring-diaphragm actuators, are lightweight, compact, efficient and in general, they take a smaller footprint for installation in pipelines, they are simply, one of the best choices in actuation systems for rotary control valves.

The Series RA piston cylinder actuators are offered as our standard offer for all of our Rotary valves: Series Exc, Series VB, and Series Dx.

The Optimux Series RA piston cylinder actuator was designed to work with supply pressures of up to 150 psi (10.3 bars), which significantly increases torque capacity. The Series RA performance and reliability in the field has no par, as it has proven life service above one million cycles.

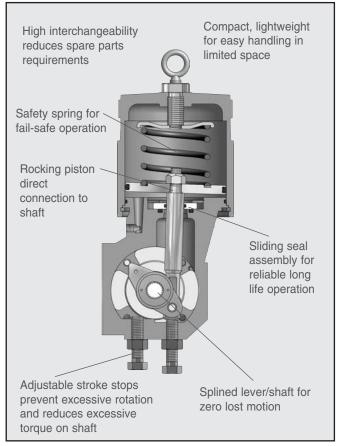


Figure 4: RA Rotary Actuator

The pneumatic stiffness achieved by the Series RA assures excellent throttling and control characteristics specially in near closing control positions.

-	
Туре	Double-acting piston and cylinder with fail-safe spring
Sizes	25, 50
Action	Air-to-open Air-to-close Last position Field reversible
Operating Pressure	Max 150 psig Max 10,3 bars
Stroking Speed	≤ 1 second
*Temperature Range	-40° to 350°F (-40° to 175° C)
Auxiliary Handwheels	Declutchable side-mounted handwheel Lever-gear operated handwheel Lever operator
Positioners	Digital HPP-3000 Digital HPP-3500

Table I: Rotary Actuator Specifications

Table II: Construction Materials

Yoke	Ductile iron
Transfer Case	Anodized aluminum
Splined Lever Arm	Nickel-plated ductile iron
Stem	UNS S 41600 Stainless Steel
Bearings	Filament wound fiberglass with Teflon liner
Sliding Seal	Delrin, aluminum
Retaining Ring	Cadmium plated steel
Piston	Anodized Aluminum
Cylinder	Anodized Aluminum
O-Ring*	Buna-N (standard)
Actuator spring	Coated steel (rust proof)
Spring button	Cadmium-plated steel

* Ambient temperatures greater than 180° F (82° C) require Viton O-rings. Ambient temperatures below -40° F (-40°C) require fluorosilicone O-rings.

OpExc Rotary Actuator, Features and Advantages

RPA Rack and Pinion Actuators

Optimux's Series RPA represent an excellent alternative to our RA Piston-Cylinder Series for rotary valves applications. As with the RA Series the RPA actuators are compact, allow for field reversibility, provide adequate torque for most standard applications and are easy to maintain. RPA actuators are designed for extremely long cycle life when utilized in normal loading applications. The RPA actuators will take service temperatures of -10^e to 275^e F (-23^e to 135^e C).

The Series RPA actuators are also offered for all our rotary valves: Series Exc, VB and Dx.

PSI	40	60	80	100	120
RPA052	263	395	526	658	789
RPA148	740	1,109	1,479	1,849	2,219
RPA222	1,109	1,664	2,218	2,773	3,327
RPA470	2,071	3,106	4,142	5,177	6,213
RPA900	4,550	6,825	9,100	11,375	13,650

Table III: Double Acting Torque Values (In. Lbs)

* Other model numbers and torque options are also available

Optimux HPP3000 Smart Valve Positioners

The HPP3000 is a high performance microprocessor-based, current-to-pneumatic HART® positioner which also has available options such as Foundation[™] Fieldbus, DE, and standard 4-20mA.

This smart positioner incorporates state-of-the-art features such as: Automatic configuration, split range options, 16 points of characterization, self-diagnostics, etc, all contributing to increase productivity and efficiency in industrial plants.

The HPP3000 is FM/CENELEC/NEPSI/CSA certified for explosion proof and intrinsically safe requirements. For more information please refer to Optimux HPP3000 technical bulletin: TB-HPP3000-07-04.

Optimux HPP3500 Smart Valve Positioners

The HPP3500 delivers all the same technical benefits and characteristics as of our HPP3000, however the HPP3500 was specially designed to conform the needs of most rotary actuated valves, such as smaller footprint requirements and specific mounting options such a NAMUR. The HPP3500 is intrinsically safe and is certified by FM/CENELEC/ATEX. For more information please refer to Optimux HPP3500 technical bulletin: TB-HPP3500-07-04.

The HPP3000 and HPP3500 in combination with our rotary actuators: RA and RPA, deliver the highest level of control accuracy and responsiveness of the industry.

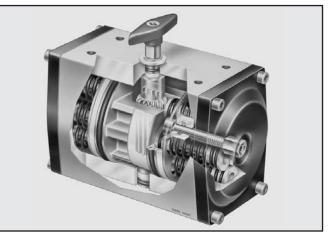


Figure 5: RPA Rack and Pinion Actuator

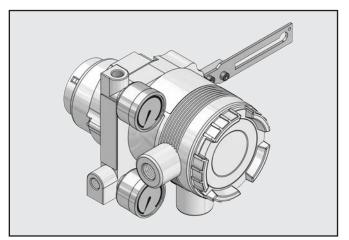


Figure 6: HPP3000 Digital Series

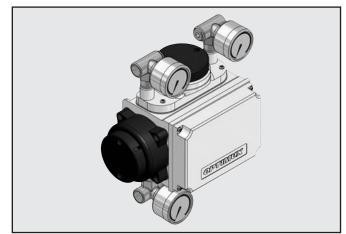


Figure 7: HPP3500 Digital Series

OpExc Rotary Actuator, Specifications

Size	Str	oke		n Inlet Air ssure	Spring	Cylinder	Cylinder Top Area Cylinder E		Bottom Area	
	Cm	Inches.	Bar	Psi	Туре	Cm ²	Inch ²	Cm ²	Inch ²	
25	47.8	1.88	10.3	150	Standard Heavy	153.3	23.76	148.8	23.07	
50	82.6	3.25	10.3	150	Standard Heavy	304.3	47.17	297.2	46.07	
100	101.6	4.00	10.3	150	Standard Heavy	613.1	95.03	601.7	93.26	
200	101.6	4.00	5.5	80	Standard Heavy	1217.4	188.69	1206.0	186.92	

8

Table II: Actuator Specifications

Table III: Actuator Specifications

Туре	Cylinder with Double Acting Piston with spring for fail position
Sizes	25, 50, 100, 200;
	Handwheel type
	Manual-Rotary
Type of Action	Air-to-Open
	Air-to-Close
	Field Reversible
Operating	Max. 10.3 Bars (150 psi)
Pressure*	
Operating	-40°C a 175°C (-40°a 35°F)
Temperature**	

- * See Table II for limitations in certain sizes.
- ** Ambient temperatures superior to 82°C (180°F) require Viton rings.
 Ambient temperatures inferior to -40°C (-40°F) require Fluorsilicone rings.

Table IV: Construction Materials

Yoke	Ductile Iron
Transfer case	Anodized Aluminum
Shaft	Stainless Steel 420
Bearings	Fiberglass with Teflon
Retaining Ring	Derlin, Aluminum
Sliding Seal	Steel with Cadmium
Piston	Anodized Aluminum
Cylinder	Anodized Aluminum
"O" Ring**	Buna N (Standard)
Spring Base	Stainless Steel

Exl Packings

The **ExL** rotary valve is built with a large packing box which gives a longer service life to the packing assembly. The **ExL** Packing box design allows for the use of a large number of packing system options, and fully complies with the most demanding fugitive emission control regulations in modern industrial processes.

Standard Packing

The **EXL** standard packing set is composed by PTFE "V" rings, Figures 8A and 8B. The PTFE "V" rings are the most used packing system since their introduction, providing exceptional tight sealing. They provide a very low friction coefficient, good mechanical resistance and excellent resistance to corrosion. The PTFE "V" rings are the most common application choice for gasketing material.

The PTFE "V" rings are used within temperature ranges of 150° to 450°F (-101 to 232° C). High Temperature Packing The **ExL** formed packing rings, Figures 9A and 9B, is an alternative choice whenever the operating temperature exceeds that determined for the use of PTFE "V" rings. The materials employed in the formed packing rings of the **ExL** are braided PTFE for use in temperatures up to 500°F (260°C) and Grafoil for use in temperatures up to 752°F (400°C). The Grafoil formed packing rings are an excellent choice whenever packing is subjected to high operating temperatures, however it should be noted that the demand of high forces required to achieve a tight sealing results in a significant friction increase forces as the valve plug turns.

Special Packing

The PT type packing set, Figure 10A, is composed by a set of "V" type rings under compression by an assembly of disc springs that result in a "live-loading" effect. This system achieves a sealing level of below 500 ppm. The PT type packing combines the superior virgin PTFE "V" rings guality with the PTFE "V" rings combined with carbon filament wound. The PTG type packing, Fig. 10B, is composed of an advanced packing set that is capable of keeping a sealing rate very below 500 ppm (at a 10 ppm step rate). The PTG packing set is composed by the combination of PTFE "V" rings with carbon filament wound and Kalrez® "V" rings, an advanced material that provides a superior performance to the packing set. For temperatures higher than 450°F (232° C) the PTG XT packing set is employed. This type of packing utilizes Zymax® rings instead the PTFE/carbon rings.

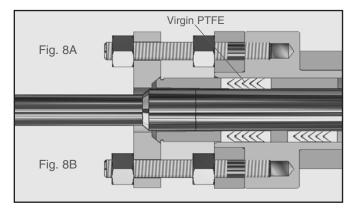


Figure 8A: Standard Packing: "V" rings Figure 8B: Double Packing: "V" rings

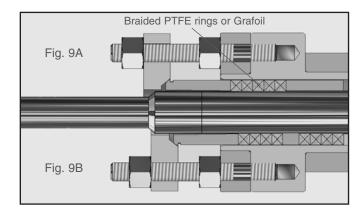


Figure 9A: Packing: Formed Rings Figure 9B: Double Packing: Formed Rings

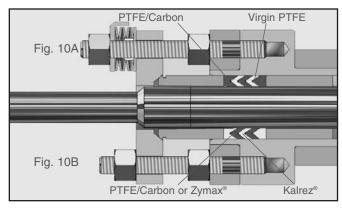


Figure 10A: PT Packing Set Figure 10B: PTG Packing Set

9

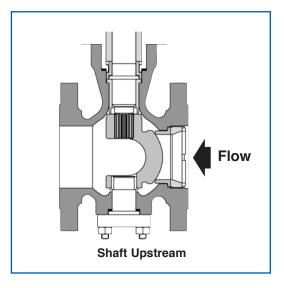
OpExc Specifications, Limitations of the Stem

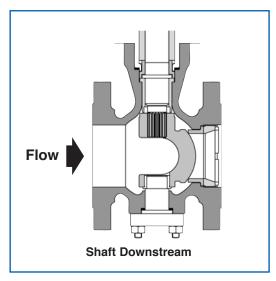
Size	Area of the	Degrees of Opening									
(Inches)	Internals	0	10	20	30	40	50	60	70	80	90
1	Total	1450	1427	1277	1156	1214	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
1 1/2	Total	1421	1086	972	880	924	1231	1231	1450	1450	1450
	70%	1450	1450	1347	1218	1250	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
2	Total	1450	1111	994	899	945	1260	1260	1450	1450	1450
	70%	1450	1450	1440	1302	1367	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
3	Total	1450	1450	1434	1298	1363	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
4	Total	1272	972	972	1032	1032	918	918	1180	1450	1450
	70%	1450	1362	1362	1447	1447	1286	1286	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
6	Total	751	574	574	610	610	542	542	697	976	976
	70%	983	752	752	799	799	711	711	913	1278	1278
	40%	1450	1146	1146	1218	1218	1082	1082	1392	1450	1450
8	Total	540	372	418	480	395	326	312	370	447	447
	75%	714	493	553	635	523	431	413	490	592	592
10	Total	224	156	173	199	163	135	129	153	185	185
	75%	296	204	229	263	217	179	171	203	245	245
12	Total	348	277	348	332	258	193	164	164	219	219
	75%	461	367	462	441	342	257	218	218	291	291

Table V: Maximum Differential Pressure of the Stem (Psi)= Downstream

OpExc Specifications

Size	Area of the			-		prees of Op					
(Inches)	Internals	0	10	20	30	40	50	60	70	80	90
1	Total	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
1 1/2	Total	1321	1450	1450	1450	1450	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
2	Total	1260	1450	1450	1450	1450	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
3	Total	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
4	Total	1102	1378	1450	1450	1450	1450	1450	1450	1450	1450
	70%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	40%	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
	6 Total	650	813	1450	1450	1450	1394	976	976	1450	1450
	70%	852	1065	1450	1450	1450	1450	1279	1279	1450	1450
	40%	1298	1450	1450	1450	1450	1450	1450	1450	1450	1450
8	Total	432	540	1296	1450	1450	926	648	648	1450	1450
	75%	572	715	1450	1450	1450	1226	858	858	1450	1450
10	Total	179	224	538	1343	1450	384	269	269	1343	1343
	75%	237	296	711	1450	1450	508	356	356	1450	1450
12	Total	232	290	667	1450	1450	497	348	348	1450	1450
	75%	309	386	925	1450	1450	660	462	462	1450	1450


Table VI: Maximum Differential Pressure of the Stem(Psi) = Upstream


Table VII: Maximum Differential Pressure on the seat

Type of Seat	Process	Open Po	osition	Closed Position		
	Fluid	Bar	Psi	Bar	Psi	
Metal Seat	Liquids, Vapors	24.7	363	98.6	1450	
Metal Seat	Gases	49.3	725	98.6	1450	
Soft Seat	Liquids, Vapors	9.8	145	49.3	725	
Soft Seat	Gases	19.7	290	49.3	725	

OpExc Specifications

Table VIII: Maximum Flow Capacity (Cv)	Table	VIII:	Maximum	Flow	Capacity	(Cv)
--	-------	-------	---------	------	----------	------

N.L.	Trim Area								
Valve	10	0	75/	/70	40				
Size		S	Shaft Or	ientatio	n				
(Inches)			Ou	tlet					
	Metal	Soft	Metal	Soft	Metal	Soft			
1	18	10	13	7	7	6			
1 1/2	47	39	33	33	19	19			
2	80	71	53	53	32	32			
3	245	245	182	182	104	104			
4	408	408	269	269	170	170			
6	935	935	560	560	392	392			
8	1500	1500	930	930					
10	2180	2180	1740	1740					
12	3200	3200	2020	2020					

12)

Valve	Trim Area													
	10	0	75	/70	40									
Size	Shaft Orientation													
(Inches)	Inlet													
	Metal	Soft	Metal	Soft	Metal	Soft								
1	21	12	15	8	8	6								
1 1/2	50	40	35	35	20	20								
2	78	69	55	55	31	31								
3	218	218	167	167	95	95								
4	305	305	223	223	150	150								
6	780	780	597	597	335	335								
8	1100	1100	826	826										
10	1725	1725	1294	1294										
12	2440	2440	1830	1830										

OpExc Dimensions

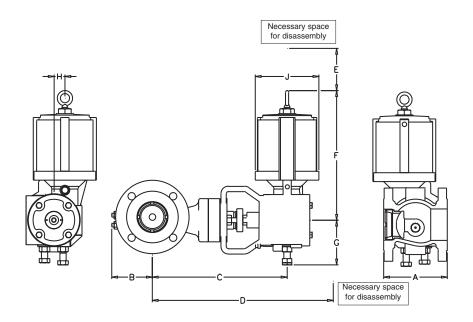


Table X: Dimensions for the OpExc

Valve Size	Actuator	Ste	em	A *		В		С		D		E		F		G		н		J	
(Inches)	Size	Diam	neter																		
		mm	In.	mm	In.	mm	In.	mm	In.	mm	In.	mm	In.	mm	In.	mm	In.	mm	In.	mm	In.
1	25	11	0.4	102	4.0	61	2.4	297	11.7	510	20.0	152	6.0	332	13.1	142	5.6	28	1.1	165	6.5
1 1/2	25	16	0.6	114	4.5	79	3.1	322	12.7	535	21.0	152	6.0	332	13.1	142	5.6	28	1.1	165	6.5
2	25	16	0.6	124	4.9	86	3.4	324	12.8	535	21.0	152	6.0	332	13.1	142	5.6	28	1.1	165	6.5
	50	16	0.6	124	4.9	86	3.4	324	12.8	535	21.0	203	8.0	457	18.0	170	6.7	51	2.0	231	9.1
3	25	23	0.9	165	6.5	119	4.7	419	16.5	635	25.0	152	6.0	332	13.1	142	5.6	28	1.1	165	6.5
	50	23	0.9	165	6.5	119	4.7	419	16.5	635	25.0	203	8.0	457	18.0	170	6.7	51	2.0	231	9.1
4	25	23	0.9	194	7.6	127	5.0	423	16.7	661	26.0	152	6.0	332	13.1	142	5.6	28	1.1	165	6.5
	50	23	0.9	194	7.6	127	5.0	423	16.7	661	26.0	203	8.0	457	18.0	170	6.7	51	2.0	231	9.1
6	50	26	1.0	229	9.0	160	6.3	468	18.4	680	27.0	203	8.0	457	18.0	170	6.7	51	2.0	231	9.1
	100	38	1.5	229	9.0	160	6.3	468	18.4	722	29.0	279	11.0	574	22.6	231	9.1	61	2.4	318	12.5
8	50	26	1.0	243	9.6	190	7.5	479	18.8	685	27.0	203	8.0	457	18.0	170	6.7	51	2.0	231	9.1
	100	38	1.5	243	9.6	190	7.5	479	18.8	733	29.0	279	11.0	574	22.6	231	9.1	61	2.4	318	12.5
10	50	26	1.0	273	10.7	226	8.9	548	21.6	751	30.0	203	8.0	457	18.0	170	6.7	51	2.0	231	9.1
	100	38	1.5	273	10.7	226	8.9	548	21.6	802	32.0	279	11.0	576	22.6	231	9.1	61	2.4	318	12.5
12	100	38	1.5	292	11.5	267	10.5	573	22.5	827	33.0	279	11.0	576	22.6	231	9.1	61	2.4	318	12.5

(13)

OpExc

The information and specification described in this brochure are considered accurate. However these are for information purposes only and should not be considered as certified information. Considering that Optimux products are continuously improved and updated, specifications, dimensions and information described herein are subject to change without notice. For further information or verification, consult your Optimux representative. Specific instructions for the installation, operation, troubleshooting and maintenance of the OpExc is contained in the OpExc installation and maintenance manual.

Teflon is a trademark of E. I. DuPont Company.

For more information, visit our website at www.optimuxcontrols.com

